By Trinh, Spring-break 2025

General form, solve $A^x = x^B$ (A > 0 and $x \neq 0$) Goal: Convert to form $k^{\frac{1}{k}} = x^{\frac{1}{x}} \rightarrow$ Solution x = kPower both sides to $\frac{1}{Bx} \rightarrow (A^x = x^B)^{\frac{1}{Bx}} \rightarrow A^{\frac{1}{B}} = x^{\frac{1}{x}}$ Work on the left side to convert it to form $k^{\frac{1}{k}} = A^{\frac{1}{B}}$ We want to obtain a variable X such that $A^X = BX = k$

Sub work

Think of equation in the form
$$A^X = BX$$

Multiply both sides by $-A^{-X} \rightarrow -A^{-X}(A^X = BX) \rightarrow -1 = -BXA^{-X}$
Rewrite $A = e^{\ln{(A)}}$ We have $-1 = -BXe^{-Xln(A)}$
Multiply $\frac{\ln{(A)}}{B}$ both sides $\rightarrow \frac{\ln{(A)}}{B}(-1) = \left(\frac{\ln{(A)}}{B}\right) \left(-BXe^{-Xln(A)}\right)$
 $\frac{-\ln(A)}{B} = -X\ln{(A)}e^{-Xln(A)}$

Apply Lambert function (product logarithm) both sides

$$egin{array}{ll} W_0(xe^x)=x & ext{ for } x\geq -1, \ W_{-1}(xe^x)=x & ext{ for } x\leq -1. \end{array}$$

$$W\left(\frac{-\ln\left(A\right)}{B}\right) = W\left(-X\ln(A)e^{-X\ln(A)}\right)$$

Or $W\left(\frac{-\ln\left(A\right)}{B}\right) = -X\ln(A) \rightarrow X = \frac{W\left(\frac{-\ln\left(A\right)}{B}\right)}{-\ln\left(A\right)}$

Back to main work, since

$$A^{x} = Bx = k \rightarrow k = A^{X} \text{ or } k = BX \rightarrow k = B \frac{W\left(\frac{-\ln(A)}{B}\right)}{-\ln(A)}$$

Now we have the solution for our problem $x = k = B \frac{W(\frac{-\ln(A)}{B})}{-\ln(A)}$

Don't be confused between x in the main solution with X in sub work

Finally, back to our original, solve $A^x = x^B$ (A > 0 and $x \neq 0$)

Solution
$$k = x = B \frac{W\left(\frac{-\ln(A)}{B}\right)}{-\ln(A)}$$

Using either principal branch W_{o} or secondary branch $W_{\text{-1}}$

or both to obtain the real solution(s)

Solve
$$2^{x} = x^{4}$$
 $A = 2$ $B = 4$ $\rightarrow x = B \frac{W(\frac{-\ln{(A)}}{B})}{-\ln{(A)}} = 4 \frac{W(\frac{-\ln{(2)}}{4})}{-\ln{(2)}}$

<u>Link to solution 1</u> x = 1.2396

<u>Link to solution 2</u> x = 16

🜞 WolframAlpha	😽 woirramAipna
/-log(2)*productlog(0,(-log(2)/4	4 ((Jop(2)
🗱 NATURAL LANGUAGE 🕂 👔 MATH INPUT 🔤 EXTENDED KEYBOARD 🔠 EXAMPLES 🛓 UPLOAD 🌫 RANDOM	$\frac{4}{-\log(2)} * \operatorname{productlog} \left(-1, \left(\frac{-\log(2)}{4} \right) \right)$
	🔆 NATURAL LANGUAGE
Assuming Tog' is the natural logarithm Use the base 10 logarithm instead	
$-\frac{4}{\log(2)}W_0\Big(-\frac{\log(2)}{4}\Big)$ $\log(i)$ is the natural logarithm $W_0(z)$ is the analytic constantiation of the product log function	Assuming "log" is the natural logarithm Use the base 10 logarithm instead
Exact result	Input
$-\frac{4 W\left(-\frac{\log 2}{4}\right)}{\log(2)}$	$-\frac{4}{\log(2)} W_{-1}\Big(-\frac{\log(2)}{4}\Big)$
log(ir) is the natural logarithm W(z) is the product log function	
Decimal approximation More digits	$W_k(z)$ is the analytic continuation
1.23962772952276214181846313555091944381156039242740876682667595	Result
398176966418	16
	Number line

I wrote a solution checking with productlog function embedded in demos here.

(Just google desmos productlog function)

https://www.desmos.com/calculator/q2cjgfmcxl